# THERMOCHROMISM AND PHOTOCHROMISM OF ARYL-SUBSTITUTED ACYCLIC AZINES V: QUENCHING OF THE PHOTOCHEMICAL E-Z ISOMERIZATION VIA FÖRSTER ENERGY TRANSFER

K. APPENROTH<sup>†</sup>, M. REICHENBÄCHER and R. PAETZOLD Sektion Chemie der Friedrich-Schiller-Universität Jena, DDR-6900 Jena (G.D.R.) (Received August 5, 1982; in revised form January 26, 1983)

# Summary

The E-Z photoisomerization of benzophenone-9-anthraldehyde azine is quenched by dyes of the appropriate singlet energy. The quenching occurs predominantly via Förster energy transfer. The development of a procedure that allows a distinction to be made between direct and sensitized fluorescence for the case of a non-fluorescing donor (azine) and overlapping donor and acceptor spectra is reported.

# 1. Introduction

Our investigations of 2,3-diazabutadienes (azines) with various substitutions have shown that photochromism is a general property of this class of compound [1, 2]. On irradiation into the longest wavelength absorption band reversible E-Z isomerization about the C=N bond takes place, and for benzophenone-9-anthraldehyde azine (BPhAA) only two isomers are possible (Fig. 1). In both cases the S<sub>1</sub> state is photoreactive [3]. When appropriate dyes are used concentration-dependent quenching of the photoisomerization is observed in ethanolic solutions. A possible quenching mechanism is the Förster energy transfer between the azine (donor) and the dye (acceptor).

As azines do not show any fluorescence at room temperature [4] quenching of the azine photoisomerization by the dye would be an example of a singlet-singlet energy transfer between a non-fluorescing donor and an acceptor which obeys the Förster mechanism. At present only a few examples of this behaviour are known [5]. The reason for this paucity of data may be the difficulty in distinguishing between sensitized and unsensitized acceptor fluorescence when the donor and acceptor spectra

<sup>&</sup>lt;sup>†</sup>Present address: Sektion Biologie der Friedrich-Schiller-Universität Jena, DDR-6900 Jena (G.D.R.)



Fig. 1. The E-Z isomerization of BPhAA.

overlap. Therefore it is necessary to develop a procedure which allows sensitized fluorescence to be detected for non-fluorescing donors and overlapping donor and acceptor spectra.

### 2. Experimental details

#### 2.1. Materials

The E isomer of BPhAA (E-BPhAA) was prepared in the absence of actinic light by standard procedures [6]. The dyes (quenchers) used were purchased from Merck, Schuchardt and Fluka; they were used without further purification. The solvents used were purified by standard methods [7].

## 2.2. Spectra

The spectra of BPhAA and the dyes were recorded in ethanol using a Cary model 17 spectrometer. The extinction coefficients  $\epsilon'$  for *E*-BPhAA and *Z*-BPhAA at the irradiation wavelength are 9700 M<sup>-1</sup> cm<sup>-1</sup> and 50 M<sup>-1</sup> cm<sup>-1</sup> respectively.  $\epsilon'$  was determined experimentally for erythrosine B (1850 M<sup>-1</sup> cm<sup>-1</sup>) and rhodamine B (1400 M<sup>-1</sup> cm<sup>-1</sup>). The fluorescence spectra were obtained using a FICA 55 spectrofluorometer (ARL, France). Neither BPhAA isomer showed any fluorescence [4].

#### 2.3. Polarography investigations

The polarographic half-wave potentials of the dyes used were determined with a GWP 673 polarograph (G.D.R.) and a dropping mercury electrode. The dye concentration was  $8 \times 10^{-4}$  M in a 50% ethanolic solution of a 0.1 M phosphate buffer (pH 7.55).

## 2.4. Quenching of the E-Z photoisomerization

The change d[E] in the concentration of the E isomer as a result of the  $E \rightarrow Z$  photoreaction induced by monochromatic irradiation is given by [8]

$$\frac{\mathrm{d}[E]}{\mathrm{d}t} = -\phi_{EZ}I_E + \phi_{ZE}I_Z$$

The intensities  $I_E$  and  $I_Z$  absorbed by isomers E and Z respectively are represented by

$$I_E = I_0 \frac{\epsilon_E'[E]}{A'} (1 - 10^{-A'})$$
$$I_Z = I_0 \frac{\epsilon_Z'[Z]}{A'} (1 - 10^{-A'})$$

where A' is the absorbance,  $\epsilon'$  is the extinction coefficient and  $I_0$  is the incident light intensity at the irradiation wavelength  $\lambda'$ . The terms  $\epsilon_E'[E]/A'$  and  $\epsilon_Z'[Z]/A'$  involve only the light absorbed by the E and Z isomers at  $\lambda'$ . Thus both the influence of the dye absorption at  $\lambda'$  and a possible trivial quenching process by the dye are eliminated.

The quantum yields  $\phi_{EZ}$  and  $\phi_{ZE}$  of the photoreactions  $E \rightarrow Z$  and  $Z \rightarrow E$  respectively are determined by integrating the differential equation given above and performing a graphical or numerical evaluation [8] using a computer program [9]. The quantum yield of the  $E \rightarrow Z$  isomerization in ethanol in the absence of the quencher is  $\phi_{EZ}^{\circ} = 0.0077$ . Since linear extinction difference diagrams are obtained, the photoisomerization also proceeds as a unitary

$$E \stackrel{h\nu}{\longleftrightarrow} Z$$

reaction (einheitliche Reaktion [8]) in the presence of the dyes.

The Stern-Volmer quenching constants  $k_{SV}$  obtained by plotting  $\phi_{EZ}^{\circ}/\phi_{EZ}$  versus [Q] are summarized in Table 1. The concentration of BPhAA was  $5 \times 10^{-5}$  M in all experiments and the range of concentration of the quenchers used is given in Table 1. The "dyes" which did not exhibit a quenching effect (*E*-stilbene, anthracene, acridine, fluorenone, methylene blue, night blue and thionine) had concentrations in the range  $1.0 \times 10^{-4} - 25 \times 10^{-4}$  M.

The irradiation wavelength was 436 nm. A high pressure mercury lamp (HBO 200; VEB Narva, Berlin) was used as the light source, and monochromatic radiation was selected using an HgMon 436 filter (VEB Carl Zeiss, Jena).

### 2.5. Sensitized fluorescence

The dyes erythrosine B and rhodamine B were used to determine the sensitized fluorescence. The fluorescence spectra were recorded using a linear measuring technique: the light from the HBO 200 lamp passed through a 436 nm metal interference filter (VEB Carl Zeiss, Jena), a high intensity monochromator (Bausch and Lomb), the sample and a GDM 1000 mono-chromator (VEB Carl Zeiss, Jena) and was finally detected using a

## TABLE 1

| Dye                       | Concentration<br>(×10 <sup>4</sup> M) | k <sub>sv</sub><br>(×10 <sup>−3</sup> M) |
|---------------------------|---------------------------------------|------------------------------------------|
| Acridine orange           | 0.2 - 0.6                             | 9.33                                     |
| Ervthrosine B             | 0.4 - 1.5                             | 4.96                                     |
| Methyl red                | 0.6 - 1.1                             | 2.07                                     |
| Diamond fuchsine          | 1.0 - 2.8                             | 1.55                                     |
| Eosin Y                   | 1.0 - 3.0                             | 0.96                                     |
| Rhodamine B               | 1.2 - 3.6                             | 0.52                                     |
| E-thioindigo <sup>a</sup> | 1.0 - 2.5                             | 1.03                                     |

Stern–Volmer constants for the quenching of the  $E \rightarrow Z$  photoisomerization of E-BPhAA by various dyes in ethanol solutions

<sup>a</sup>Non-ionic dye in benzene solvent.

photomultiplier. The irradiation wavelength  $\lambda'$  was 436 nm and the emission wavelength used in the evaluation according to eqns. (11) and (16) below was in the non-absorbing range of donor and acceptor for both dyes  $(\lambda_{emission} > 600 \text{ nm})$ . In both cases five emission wavelengths were used in the evaluation.

The concentration of the acceptor (dye) was adjusted to a value such that the overall absorbance A' at the excitation wavelength ( $A' = A_{BPhAA}' + A_{dye}'$ ) was greater than 2.0. The variation in the donor (*E*-BPhAA) concentration ((1.0 - 4.8) × 10<sup>-4</sup> M) is limited by its low solubility in ethanol. The use of solvents with a better solubility for BPhAA (*e.g.* toluene) is not possible because the dyes are only slightly soluble in these solvents.

# 3. Results and discussion

# 3.1. Investigation of the quenching of the photoreaction

The  $E \rightarrow Z$  photoisomerization of E-BPhAA can be quenched by adding the following dyes: fluorescein, acridine orange, methyl red, saffranine O, eosin Y, erythrosine B, E-thioindigo, phloxine B, rhodamine B, pyronine B and diamond fuchsine. The longest wavelength absorption band of these dyes lies in the range 490 - 555 nm which is close to that of E-BPhAA ( $\lambda_{max} = 410$  nm).

Seven quenching dyes were selected for the determination of the Stern-Volmer quenching constants  $k_{\rm SV}$ . The Stern-Volmer plots were all linear (Fig. 2); the quenching constants  $k_{\rm SV}$  are summarized in Table 1. The viscosity of the solvent has only a weak influence (Table 2). Thus the quenching mechanism is not diffusion controlled. Quenching by the anions of ionic dyes [10] can be excluded because neither NaI nor KI in concentrations up to  $10^{-3}$  M has any effect on the  $E \rightarrow Z$  photoisomerization. However, the non-ionic dye *E*-thioindigo decreases the isomerization quantum yield markedly.



Fig. 2. Experimental plot of  $\phi_{EZ}^{\circ}/\phi_{EZ}$  vs. the concentration [dye] of the dyes used to quench the  $E \rightarrow Z$  photoisomerization: curve 5, rhodamine B; curve 6, *E*-thioindigo; curve 7, erythrosine B; curve 8, diamond fuchsine; curve 9, eosin Y; curve 10, methyl red; curve 11, acridine orange.

#### TABLE 2

Effect of the viscosity of the solvent on the Stern-Volmer quenching constants  $k_{SV}$ 

| Quencher        | $k_{\rm SV}$ (×10 <sup>3</sup> M <sup>-1</sup> ) in the following solvents |                 | Ratio |
|-----------------|----------------------------------------------------------------------------|-----------------|-------|
|                 | Ethanol                                                                    | Ethylene glycol |       |
| Acridine orange | 9.33                                                                       | 7.04            | 1.33  |
| Rhodamine B     | 0.52                                                                       | 0.42            | 1.24  |

In addition, neither quenching by electron transfer from a reducing agent [11] nor quenching by proton transfer in the excited state [12] is a competitive process because amines (aniline, diphenylamine and diethylamine in concentrations up to  $10^{-2}$  M), phenols (phenol and *p*nitrophenol in concentrations up to  $10^{-2}$  M) and benzoic acid (in concentrations up to  $10^{-3}$  M) do not influence the quantum yield of the  $E \rightarrow Z$ photoisomerization. Since there is no relation between the polarographic half-wave potentials of the dyes and the Stern-Volmer quenching constants (Table 3), electron transfer from the dye to the azine (oxidizing quenching [11]) can also be excluded.

A number of dyes are capable of sensitizing the photochemical  $Z \rightarrow E$  isomerization via population of the triplet state [3]. This process also reduces the  $E \rightarrow Z$  quantum yield and thus might be misinterpreted as quenching. Such a process can be effective with eosin and erythrosine B

| Dye              | HWP   | ksv                            |  |
|------------------|-------|--------------------------------|--|
|                  | (V)   | $(\times 10^3 \text{ M}^{-1})$ |  |
| Acridine orange  | 1.067 | 9.33                           |  |
| Diamond fuchsine | 0.773 | 1.55                           |  |
| Erythrosine B    | 0.445 | 4.96                           |  |
| Nile blue        | 0.413 | ≈ 0                            |  |
| Eosin Y          | 0.405 | 0.96                           |  |
| Methyl red       | 0.366 | 2.07                           |  |
| Rhodamine B      | 0.268 | 0.52                           |  |
| Methylene blue   | 0.237 | $\approx 0$                    |  |

Comparison of the polarographic half-wave potentials HWP of the dyes with the Stern-Volmer quenching constants  $k_{SV}$ 

in an air-saturated solution [13]. In the present case, however, the effect is not important because the irradiation wavelength is not in the main absorption region of the dyes, and few of the dyes employed have a sufficiently high intersystem crossing rate.

Hence only the absorption properties of the dyes are important in the quenching process (Fig. 3). Dyes absorbing at significantly longer wavelengths ( $\lambda > 600$  nm) than *E*-BPhAA (methylene blue, nile blue, night blue and thionine) and "dyes" absorbing at significantly shorter wavelengths ( $\lambda < 400$  nm) (*E*-stilbene, anthracene, acridine and fluorenone) have no influence on the  $E \rightarrow Z$  photoisomerization.

Since the main absorption band of all the active quenching substances is close to the longest wavelength absorption band of E-BPhAA, a Förster-



Fig. 3. Plot of the Stern-Volmer quenching constant  $k_{SV}$  us. the wavenumber  $\tilde{\nu}_{max}$  of the longest absorption band of the dyes used: 1, methylene blue; 2, nile blue; 3, night blue; 4, thionine; 5, rhodamine B; 6, *E*-thioindigo; 7, erythrosine B; 8, diamond fuchsine; 9, eosin Y; 10, methyl red; 11, acridine orange; 12, fluorenone; 13, anthracene; 14, acridine; 15, *E*-stilbene.

TABLE 3

type singlet-singlet energy transfer is possible. The relation between the absorption maximum of the acceptor and the Stern-Volmer quenching constants, however, is not a sufficient argument, and therefore the evidence for a Förster energy transfer is not conclusive. Thus a definite decision can be taken only by detecting sensitized fluorescence of the acceptor.

### 3.2. Sensitized fluorescence

3.2.1. Development of the procedure for detecting sensitized fluorescence

If both the donor D and the acceptor A absorb at the irradiation wavelength  $\lambda'$ , the following kinetic scheme applies in the presence of oxygen:

$$D + h\nu \xrightarrow{T_D} {}^{1}D \tag{1}$$

$$\mathbf{A} + h\nu \xrightarrow{\mathbf{1}_{\mathbf{A}}} {}^{\mathbf{1}}\mathbf{A} \tag{2}$$

$${}^{1}\mathrm{A} \longrightarrow \mathrm{A} + h\nu^{\mathrm{F}} \tag{3}$$

$$^{1}A \longrightarrow {}^{3}A$$
 (4)

$$^{1}A \longrightarrow A$$
 (5)

$$^{1}A + A \longrightarrow 2A$$
 (6)

$$^{1}A + D \longrightarrow A + D$$
 (7)

$$^{1}A + O_{2} \longrightarrow \dots$$
 (8)

$$^{3}A + O_{2} \longrightarrow \dots$$
 (9)

$${}^{1}D + A \longrightarrow {}^{1}A + D$$
 (10)

Analogous equations can also be set up for the donor D.

When both self-quenching  $(k_6 = 0)$  and cross-quenching  $(k_7 = 0)$  are neglected, the following equation is obtained [14]:

$$\frac{F_{\rm A}}{F_{\rm A}^{\circ} - F_{\rm A}} = k_{10}(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm A}] + \frac{\epsilon_{\rm A}'[{\rm A}]}{\epsilon_{\rm D}'[{\rm D}]} \{1 + k_{10}(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm A}]\}$$
(11)

where  $F_A$  and  $F_A^{\circ}$  are the fluorescence intensities of the acceptor in the presence and absence respectively of the donor,  $(\tau_D^{\circ})_{O_2}$  is the lifetime of <sup>1</sup>D in an oxygen-containing solution, and  $\epsilon_A'$  and  $\epsilon_D'$  are the extinction coefficients of A and D respectively at the irradiation wavelength. If eqn. (11) is valid, a straight line with intercept  $k_{10}(\tau_D^{\circ})_{O_2}[A]$  should be obtained by plotting  $F_A/(F_A^{\circ} - F_A)$  against 1/[D] at constant acceptor concentration. If  $k_{10}$  and the lifetime of <sup>1</sup>D are small, the intercept reaches values near zero at low acceptor concentrations. Therefore we have developed a procedure which allows a distinction to be made between direct and sensitized fluorescence.

If it is assumed that there is no cross-quenching  $(k_7 = 0)$  (see Section 3.2.2), the following equation can be derived from the kinetic scheme given above:

$$\frac{F_{\rm A}}{F_{\rm A}^{\circ}} = \frac{I_{\rm A}}{I_{\rm A}^{\circ}} + \frac{I_{\rm D}k_{10}(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm A}]}{I_{\rm D}^{\circ}\{1 + k_{10}(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm A}] + k_6(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm D}]\}}$$
(12)

The absorption intensities of the donor and the acceptor in the presence of the acceptor and the donor respectively are given by the following relations [8]:

$$I_{\mathbf{D}} = \frac{\epsilon_{\mathbf{D}}'[\mathbf{D}]I_{\mathbf{0}}}{\epsilon_{\mathbf{A}}'[\mathbf{A}] + \epsilon_{\mathbf{D}}'[\mathbf{D}]} \{1 - 10^{-(\epsilon_{\mathbf{A}}'[\mathbf{A}] + \epsilon_{\mathbf{D}}'[\mathbf{D}])d}\}$$
(13)

$$I_{\mathbf{A}} = \frac{\epsilon_{\mathbf{A}}'[\mathbf{A}]I_{\mathbf{0}}}{\epsilon_{\mathbf{A}}'[\mathbf{A}] + \epsilon_{\mathbf{D}}'[\mathbf{D}]} \left\{ 1 - 10^{-(\epsilon_{\mathbf{A}}'[\mathbf{A}] + \epsilon_{\mathbf{D}}'[\mathbf{D}])d} \right\}$$
(14)

where  $I_A^{\circ}$  and  $I_D^{\circ}$  are the absorption intensities in the absence of the donor and the acceptor respectively.

If it is assumed that there is no energy transfer  $(k_{10} = 0)$  and selfquenching is neglected  $(k_6 = 0)$  [14], we obtain the following equation from eqns. (12) - (14) and the experimental condition A' > 2.0 which implies  $1 - 10^{-A'} \approx 1$ :

$$\frac{F_{A}^{*}}{F_{A}^{\circ}} = \frac{I_{A}}{I_{A}^{\circ}} = \frac{\epsilon_{A}'[A]}{\epsilon_{A}'[A] + \epsilon_{D}'[D]}$$
(15)

where  $F_A^*$  is the fluorescence intensity of the acceptor in the absence of energy transfer  $(k_{10} = 0)$ . The ratio  $F_A^*/F_A^\circ$  can be calculated from the ratio of the acceptor absorbance to the donor absorbance at  $\lambda'$  (eqn. (15)). This calculated ratio can be related to the ratio  $F_A/F_A^\circ$  of the experimental intensities (eqn. (12)) to give the following equation:

$$\frac{F_{\rm A}}{F_{\rm A}^{*}} = \frac{\epsilon_{\rm D}'}{\epsilon_{\rm A}'[{\rm A}]} \frac{k_{10}(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm A}]}{1 + k_{10}(\tau_{\rm D}^{\rm S})_{\rm O_2}[{\rm A}]} [{\rm D}]$$
(16)

Provided that a singlet-singlet energy transfer is operating, the plot of  $F_A/F_A^*$  versus [D] is linear with a positive slope. This is direct evidence for enhanced fluorescence of the acceptor (sensitized fluorescence) even under very unfavourable absorption conditions for the donor and acceptor.

#### 3.2.2. Results and discussion

Erythrosine B and rhodamine B were used as the acceptors in the detection of sensitized fluorescence by the donor *E*-BPhAA. The absorption spectra of *E*-BPhAA and (E-Z)-BPhAA are shown in Fig. 4 together with the absorption and fluorescence spectra of erythrosine B and rhodamine B. Figure 5 shows the results predicted by eqn. (11). As expected, the intercepts are near zero, and therefore the rate constant  $k_{10}$  for energy transfer cannot be estimated.

The plot of  $F_A/F_A^*$  versus [D] according to eqn. (16) yields a nonlinear relation with a positive slope in the case of erythrosine B, and this is direct evidence for the sensitized fluorescence of erythrosine B on irradiation into the longest wavelength absorption band of *E*-BPhAA (Fig. 6). Thus, a Förster-type energy transfer mechanism is operating.



Fig. 4. Absorption spectra of *E*-BPhAA ( $7.6 \times 10^{-5}$  M) (curve 1), (*E*-*Z*)-BPhAA (photostationary state) (curve 2), *Z*-BPhAA ( $7.6 \times 10^{-5}$  M) (curve 3), erythrosine B ( $1.0 \times 10^{-5}$  M) (curve 4) and rhodamine B ( $1.8 \times 10^{-5}$  M) (curve 6), and fluorescence spectra of erythrosine B (A' = 0.048;  $\lambda_{exc} = 534$  nm) (curve 5) and rhodamine B (A' = 0.043;  $\lambda_{exc} = 544$  nm) (curve 7) in ethanol.



Fig. 5. Plot of  $F_A/(F_A^\circ - F_A)$  vs. 1/[D] according to eqn. (11): D is E-BPhAA; A is erythrosine B (curve 1) or rhodamine B (curve 2).

Sensitized fluorescence cannot be detected when rhodamine B is the acceptor (the plot of  $F_A/F_A^*$  versus [D] in Fig. 6 does not have a positive slope). Obviously, the fact that the quenching constant is a factor of 10 less than that obtained using erythrosine B (see Table 1) explains why sensitized fluorescence cannot be detected under the experimental conditions.



Fig. 6. Plot of  $F_A/F_A^*$  vs. [D] according to eqn. (16): D is E-BPhAA; A is erythrosine B (curve 1) or rhodamine B (curve 2).

The deviation of the ratio  $F_A/F_A^*$  from the predicted value of unity with increasing rhodamine B concentration and the non-linearity of the relation  $F_A/F_A^*$  versus [D] for erythrosine B show that the energy transfer may be complicated by further effects. Thus static quenching must be taken into account, since the spectra of E-BPhAA in the presence of the dyes erythrosine B and rhodamine B do not behave in a strictly additive way. However, the experimental results for both the quenching of the  $E \rightarrow Z$ photoisomerization and the sensitized fluorescence cannot be explained solely on the basis of static quenching, because quenching of  $E \rightarrow Z$  photoisomerization is also observed with diamond fuchsine and E-thioindigo which obey the Lambert-Beer law in the presence of the azine. Furthermore, eqn. (16) does not include the effects of cross-quenching  $(k_7)$ . If this process operates, the ratio  $F_A/F_A^*$  will decrease with increasing donor concentration.

#### References

- 1 K. Appenroth, M. Reichenbächer and R. Paetzold, Tetrahedron, 37 (1981) 569.
- 2 K. Appenroth, M. Reichenbächer and R. Paetzold, J. Photochem., 14 (1980) 39.
- 3 K. Appenroth, M. Reichenbächer and R. Paetzold, J. Photochem., 14 (1980) 51.
- 4 R. Paetzold, M. Reichenbächer and K. Appenroth, Z. Chem., 21 (1981) 421.
- 5 D. Möbius and G. Dreizler, Photochem. Photobiol., 17 (1973) 225.
- 6 M. Reichenbächer, K. Appenroth and R. Paetzold, J. Prakt. Chem., to be published.
- 7 A. Weissberger and E. S. Proskauer, Techniques of Organic Chemistry, Vol. 2, Organic Solvents, Wiley-Interscience, New York, 1935.

- 8 H. Mauser, Formale Kinetik, Bertelsmann Universitätsverlag, Düsseldorf, 1974.
- 9 H. J. Niemann, Dissertation, Tübingen, 1972.
- 10 G. Bartocci, U. Mazzucato and P. Bartolus, J. Photochem., 6 (1977) 309.
- 11 Th. Förster, Fluoreszenz Organischer Verbindungen, Vandenhoek and Ruprecht, Göttingen, 1951.
- 12 G. M. Wyman and B. M. Zarnegar, J. Phys. Chem., 77 (1973) 1204.
- 13 J. Brokken-Zijp, Mol. Photochem., 7 (1976) 399.
- 14 F. Wilkinson, Modern techniques of energy transfer. In G. G. Guilbault (ed.), Fluorescence — Theory, Instrumentation and Practice, Dekker, New York, 1967, pp. 1-36.